Prenatal toxicity of synthetic amorphous silica nanomaterial in rats.

نویسندگان

  • Thomas Hofmann
  • Steffen Schneider
  • André Wolterbeek
  • Han van de Sandt
  • Robert Landsiedel
  • Bennard van Ravenzwaay
چکیده

Synthetic amorphous silica is a nanostructured material, which is produced and used in a wide variety of technological applications and consumer products. No regulatory prenatal toxicity studies with this substance were reported yet. Therefore, synthetic amorphous silica was tested for prenatal toxicity, according to OECD guideline 414 in Wistar rats following oral (gavage) administration at the dose levels 0, 100, 300, or 1000mg/kg bw/d from gestation day 6-19. At gestation day 20, all pregnant animals were examined by cesarean section. Numbers of corpora lutea, implantations, resorptions, live and dead fetuses were counted. Fetal and placental weights were determined. Fetuses were examined for external, visceral and skeletal abnormalities. No maternal toxicity was observed at any dose level. Likewise, administration of the test compound did not alter cesarean section parameters and did not influence fetal or placental weights. No compound-related increase in the incidence of malformations or variations was observed in the fetuses. The no observed adverse effect level (NOAEL) was 1000mg/kg bw/d.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oral two-generation reproduction toxicity study with NM-200 synthetic amorphous silica in Wistar rats.

Synthetic amorphous silica (SAS) like NM-200 is used in a wide variety of technological applications and consumer products. Although SAS has been widely investigated the available reproductive toxicity studies are old and do not cover all requirements of current OECD Guidelines. As part of a CEFIC-LRI project, NM-200 was tested in a two-generation reproduction toxicity study according to OECD g...

متن کامل

Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials.

The possible combination of specific physicochemical properties operating at unique sites of action within cells and tissues has led to considerable uncertainty surrounding nanomaterial toxic potential. We have investigated the importance of proteins adsorbed onto the surface of two distinct classes of nanomaterials (single-walled carbon nanotubes [SWCNTs]; 10-nm amorphous silica) in guiding na...

متن کامل

Evaluation of silica nanoparticle toxicity after topical exposure for 90 days

Silica is a very common material that can be found in both crystalline and amorphous forms. Well-known toxicities of the lung can occur after exposure to the crystalline form of silica. However, the toxicities of the amorphous form of silica have not been thoroughly studied. The majority of in vivo studies of amorphous silica nanoparticles (NPs) were performed using an inhalation exposure metho...

متن کامل

Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs) with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs). Then, Schiff base condensation  of AmpSCMNPs with acet...

متن کامل

The Phagocytosis and Toxicity of Amorphous Silica

BACKGROUND Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reproductive toxicology

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2015